AI to help kids struggling with ADHD, Autism, Asperger Syndrome (ASD), PDD-NOS and other ASD’s
Stephane Bourles, CIO at Brain Balance

admin
By admin
3 Min Read

AI to help kids struggling with ADHD, Autism, Asperger Syndrome (ASD), PDD-NOS and other ASD’s

In a properly functioning brain, both hemispheres communicate equally and at lightning speed, millions of times per minute. In a poorly functioning brain, the left and right sides of the brain only impart partial information, causing frequent miscommunication. This is called Functional Disconnection and is the root of many types of learning, behavioral and social problems found in children. The Brain Balance program puts the left and right brains back in sync using sensory motor exercises, academic skill building, and nutrition guidelines.

How does the Assessment Work?

The assessment consists of sensory, motor, and academic testing of more than 900 functions. The outcome of this assessment is a highly customized report providing parents with a complete understanding of their child’s behavioral, social, and academic skill levels.

We use AI to determine which brain hemisphere we believe to be stronger or weaker. The Machine Learning algorithm used for the assessment is not always accurate, which we know based on the feedback from our staff—yes we let them disagree with the system, which is intended as a tool to help them support their own assessment, but not to necessarily force them into a decision they don’t agree with. But as valuable as an individual observation based on years of experience is, it still remains just the view of one individual. That is why we look at Artificial Intelligence as a new solution combining neural network architectures with massive computing power to enable our solution to learn a pattern from large datasets and make statistical predictions based on test results and feedback we already have for tens of thousands of students.

What is next?

Thanks to many product releases with different Machine Learning models we tested, we were able to improve our assessment accuracy and achieve precision, recall and F1 scores over 0.95. The limitation of this AI model is it is not 100% accurate and you don’t know for sure the source of truth. Since AI is a “black box” which can’t explain its prediction for most models, you have to trust your staff first.

Similar to clinical decision support systems helping healthcare practitioners, we believe this fast growing dataset about children, combined with new Artificial Intelligence models such as Explainable AI, will help our staff improve a child’s initial assessment, which will then improve our overall program’s results.

By Stephane Bourles, CIO at Brain Balance

Share This Article
Leave a comment

Leave a Reply

Your email address will not be published. Required fields are marked *