Routing Protocols in Mobile Ad-Hoc Networks

Mobile Ad-hoc Networks

An ad-hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any stand-alone infrastructure or centralized administration.Mobile Ad-hoc networks are self-organizing and self-configuring multihop wireless networks where, the structure of the network changes dynamically.

Problems with routing in Mobile Ad-hoc Net-works

Asymmetric links: Most of the wired networks rely on the symmetric links which are always fixed. But this is not a case with ad-hoc networks as the nodes are mobile and constantly changing their position within network. For example consider a MANET (Mobile Ad-hoc Network) where node B sends a signal to node A but this does not tell anything about the quality of the connection in the reverse direction.

Routing Overhead: In wireless ad hoc networks, no des often change their location within network. So, some stale routes are generated in the routing table which leads to unnecessary routing overhead.

Interference: This is the major problem with mobile ad-hoc networks as links come and go depending on the transmission characteristics, one transmission might interfere with another one and no de might overhear transmissions of other nodes and can corrupt the total transmission.

Dynamic Topology: This is also the major problem with ad-hoc routing since the topology is not constant. The mobile node might move or medium characteristics might change. In ad-hoc networks, routing tables must somehow reject these changes in topology and routing algorithms have to be adapted. For example in a fixed network routing table updating takes place for every 30sec. This updating frequency might be very low for ad-hoc networks.

  • Classification of routing Protocols in MANET’s

Classification of routing protocols in MANET’s can be done in many ways, but most of these are done depending on routing strategy and network structure. According to the routing strategy the routing protocols can be categorized as Table-driven and source initiated, while depending on the network structure these are classified as at routing, hierarchical routing and geographic position assisted routing. Both the Table-driven and source initiated protocols come under the Flat routing.

Table-Driven routing protocols 

These protocols are also called as proactive protocols since they maintain the routing information even before it is needed. Each and every node in the network maintains routing information to every other node in the network. Routes information is generally kept in the routing tables and is periodically updated as the network topology changes. Many of these routing protocols come from the link-state routing. There exist some differences between the protocols that come under this category depending on the routing information being updated in each routing table. Furthermore, these routing protocols maintain different number of tables. The proactive protocols are not suitable for larger networks, as they need to maintain node entries for each and every node in the routing table of every node. This causes more overhead in the routing table leading to consumption of more bandwidth.

On Demand routing protocols 

These protocols are also called reactive protocols since they don’t maintain routing information or routing activity at the network nodes if there is no communication. If a node wants to send a packet to another node then this proto col searches for the route in an on-demand manner and establishes the connection in order to transmit and receive the packet. The route discovery usually occurs by flooding the route request packets throughout the network.

Destination Sequenced Distance Vector (DSDV) Protocol

The destination sequenced distance vector routing protocol is a proactive routing protocol which is a modification of conventional Bellman-Ford routing algorithm. This protocol adds a new attribute, sequence number, to each route table entry at each node. Routing table is maintained at each node and with this table; node transmits the packets to other nodes in the network. This protocol was motivated for the use of data exchange along changing and arbitrary paths of interconnection which may not be close to any base station.

Protocol Overview and activities

Each node in the network maintains routing table for the transmission of the packets and also for the connectivity to different stations in the network. These stations list for all the available destinations, and the number of hops required to reach each destination in the routing table. The routing entry is tagged with a sequence number which is originated by the destination station. In order to maintain the consistency, each station transmits and updates its routing table periodically.

The data broadcast by each node will contain its new sequence number and the following information for each new route:

– The destination address

– The number of hops required to reach the destination and

– The new sequence number, originally stamped by the destination

The transmitted routing tables will also contain the hardware address, network address of the mobile host transmitting them. The routing tables will contain the sequence number created by the transmitter and hence the most new destination sequence number is preferred as the basis for making forwarding decisions.

Leave a Reply

Your email address will not be published. Required fields are marked *